Home > Lenses > 5 Things to Know Before Buying Single layer magnesium fluoride coating

5 Things to Know Before Buying Single layer magnesium fluoride coating

Author: Vic

Apr. 21, 2025

5 0

Magnesium Fluoride Sputtering Targets and Applications - Medium

Do you need Magnesium Fluoride Sputtering Targets? Buy online at nanografi.com and enjoy global shipping & multiple payment options. Nanografi.com is at your service with its wide product range and quality service.

CLZ are exported all over the world and different industries with quality first. Our belief is to provide our customers with more and better high value-added products. Let's create a better future together.

Magnesium Fluoride (MgF2) Sputtering Targets (Size:1'’ ,Thickness:0.250'’ , Purity: 99.9%), is an inorganic compound with the formula MgF2. The compound is a white crystalline salt and is transparent over a wide range of wavelengths, with commercial uses in optics that are also used in space telescopes. It occurs naturally as the rare mineral sellaite.

Magnesium Fluoride (MgF2) Sputtering Targets can be used in many various applications. Magnesium Fluoride sputtering targets can be use in semiconductor, chemical vapor deposition (CVD) and physical vapor deposition (PVD) display and optical applications.

We will give you an example which shows how Magnesium Fluoride (MgF2) Sputtering Targets can be used for anti-reflective coating on glass substrate. An anti-reflection nano coating (AR coating) is a dielectric thin-film coating applied to an optical surface in order to reduce the optical reflectivity of that surface in a certain wavelength range. Ideally, an antireflection coating should have a refractive index equal to the square root of the index of the glass substrate. The most common material for a single-layer coating is magnesium fluoride, which has a relatively low index of about 1.38 at visible wavelengths. Magnesium fluoride is a dielectric material with a wide transmission range and a low refractive index. So it can be used as anti-reflective nano coating to reduce the loss of light in lenses or mirrors. There are various methods of preparing AR nano coating on glass substrates. One of the processes that an be used for this application is ion-beam sputtering method.

Ion-beam sputtering (IBS) is a method in which the target is external to the ion source. A source can work without any magnetic field like in a hot filament ionization gauge. Magnesium fluoride is a key compound which can be used in ion beam sputtering applications.

Spherical Lenses - Newport

Plano-Convex Lenses are the best choice for focusing parallel rays of light to a single point, or a single line in the case of cylindrical lenses. This lens can be used to focus, collect and collimate light. It is the most economical choice for demanding applications. The asymmetry of these lenses minimizes spherical aberration in situations where the object and image are located at unequal distance from the lens. The optimum case is where the object is placed at infinity (parallel rays entering lens) and the final image is a focused point. Although infinite conjugate ratio (object distance/image distance) is optimum, plano-convex lenses will still minimize spherical aberration up to approximately 5:1 conjugate ratio. For the best performance, the curved surface should face the largest object distance or the infinite conjugate to reduce spherical aberration.

Bi-Convex Lenses are the best choice where the object and image are at equal or near equal distance from the lens. When the object and image distance are equal (1:1 magnification), not only is spherical aberration minimized, but also coma, distortion, and chromatic aberration are identically canceled due to the symmetry. Bi-convex lenses function similarly to plano-convex lenses in that they have a positive focal length, and focus parallel rays of light to a point. Both surface are spherical and have the same radius of curvature, thereby minimizing spherical aberration. As a guideline, bi-convex lenses perform within minimum aberration at conjugate ratios between 5:1 and 1:5. Outside this magnification range, plano-convex lenses are usually more suitable.

Plano-Concave Lenses are the best choice where object and image are at absolute conjugate ratios greater than 5:1 and less than 1:5 to reduce spherical aberration, coma, and distortion. Plano-Concave lenses bend parallel input rays so they diverge from one another on the output side of the lens and hence have a negative focal length. The spherical aberration of the Plano-Concave lenses is negative and can be used to balance aberrations created by other lenses. Similar to the Plano-Convex lenses, the curvature surface should face the largest object distance or the infinite conjugate (except when used with high-energy lasers where this should be reversed to eliminate the possibility of a virtual focus) to minimize spherical aberration.

Want more information on Single layer magnesium fluoride coating? Feel free to contact us.

Bi-Concave Lenses are the best choice where object and image are at absolute conjugate ratios closer to 1:1 with converging input beam. The output rays appear to be diverging from a virtual image located on the object side of the lens; the distance from this virtual point to the lens is known as the focal length. Similar to the Plano-Concave lenses, the Bi-concave lenses have negative focal lengths, thereby causing collimated incident light to diverge. Bi-Concave lenses have equal radius of curvature on both side of the lens. They are generally used to expand light or increase focal length in existing systems, such as beam expanders and projection systems.

Positive Meniscus Lenses are designed to minimize spherical aberration and are generally used in small f/number applications (f/number less than 2.5). The Positive Meniscus Lenses have a larger radius of curvature on the convex side, and a smaller radius of curvature on the concave side. They are thicker at the center compared to the edges. Positive meniscus can maintain the same angular resolution of the optical system while decreasing the focal length of the other lens, resulting a tighter focal spot size. A positive meniscus lens can be used to shorten the focal length and increase the numerical aperture of an optical system when paired with another lens. For the best performance, the curved surface should face the largest object distance or the infinite conjugate to reduce spherical aberration.

Spherical Lens Material Options

Lens Type N-BK7 UV Fused Silica CaF2 MgF2 ZnSe Crown/Flint Plano-Convex Bi-Convex Plano-Concave Bi-Concave Achromatic Doublet Cylindrical Lenses Plano-Convex Plano-Concave

Coatings

Optical coatings are generally applied as a combination of thin film layers on optical components to achieve desired reflection/transmission ratio. Important factors that affect this ratio include the material property used to fabricate the optics, the wavelength of the incident light, the angle of incidence light, and the polarization dependence. Coating can also be used to enhance performance and extend the lifetime of optical components, and can be deposited in a single layer or multiple layers, depending on the application. Newport’s multilayer coatings are incredibly hard and durable, with high resistance to scratch and stains.

Anti-Reflection Coating (AR coating)

Newport offers an extensive range of antireflection coatings covering the ultraviolet, visible, near infrared, and infrared regions. For most uncoated optics, approximately 4% of incident light is reflected at each surface, resulting significant losses in transmitted light level. Utilizing a thin film anti-reflection coating can improve the overall transmission, as well as minimizing stray light and back reflections throughout the system. The AR coating can also prevent the corresponding losses in image contrast and lens resolution caused by reflected ghost images superimposed on the desired image.

Newport offers three types of AR coating designs to choose from, the Single Layer Magnesium Fluoride AR coating, the Broadband Multilayer AR coating, and Laser Line AR V-coating. A single layer Magnesium Fluoride AR coating is the most common choice that offers extremely broad wavelength range at a reasonable price. It is standard on achromats and optional on our N-BK7 plano-convex spherical lenses and cylindrical lenses. Comparing to the uncoated surface, the MgF2 provides a significant improvement by reducing the reflectance to less than 1.5%. It works extremely well over a wide range of wavelengths (400 nm to 700 nm) at angles of incidence less than 15 degrees.

Broadband Multilayer AR coating improves the transmission efficiency of any lens, prism, beam-splitter, or windows. By reducing surface reflections over a wide range of wavelengths, both transmission and contrast can be improved. Different ranges of Broadband Multilayer AR coating can be selected, offering average reflectance less than 0.5% per surface. Coatings perform efficiently for multiple wavelengths and tunable laser, thereby eliminating the need for several sets of optics.

V-coatings offer the lowest reflectance for maximum transmission. With its high durability and high damage resistance, Laser line AR V-coating can be used at almost any UV-NIR wavelength with average reflectance less than 0.25% at each surface for a single wavelength. Valuable laser energy is efficiently transmitted through complex optical systems rather than loss to surface reflection and scattering. The trade off to its superior performance is the reduction in wavelength range. AR.33 for nm is available from stock on most Newport lenses. All other V-coating can be coated on a semi-custom basis.

Coating Wavelength Range
(nm) Reflectance Cost Features AR.10
Broadband
245–440 Ravg <0.5% Moderate Only available on UV fused silica lenses MgF2
Broadband
Broadband
400–700 Ravg <1.5% Low Available on achromats, KPX series, and Cylindrical lenses AR.14
430–700 Ravg <0.5% Moderate Best choice for broadband visible applications AR.15
Broadband
250–700 Ravg <1.5% Moderate Great choice for broadband UV to visible applications AR.16
Broadband
650– Ravg <0.5% Moderate Excellent for NIR laser diode applications AR.18
Broadband
– Ravg <0.5% Moderate Ideal for telecom laser diode applications V-Coat Multilayer, AR.27 Laser Line
532 Rmax <0.25% High Highest transmission at a single wavelength V-Coat Multilayer, AR.28 Laser Line
632.8 Rmax <0.25% High Highest transmission at a single wavelength AR.33
Laser Line
Rmax <0.25% Moderate Highest transmission at a single wavelength

Comments

0